Air Balloon Calculation Policy: Division

At Air Balloon, we follow the CPA approach- concrete materials; followed by pictorials and models; then abstract. One or more of these stages will be shown concurrently in a lesson. The examples shown start from KSI and move on to KS2. However, teachers are encouraged to refer back to previous Key Stages' calculation strands to consolidate and reinforce fluency when calculating multiplication and division problems. Objects, base 10 and place value counters are key resources which are used to reinforce calculations. Missing number problems should be included in lessons regularly, to check understanding with connections to multiplication.

Calculating in KS2 has been shown as mental and written methods. This is to promote efficiency and fluency. To promote reasoning skills, children should be encouraged to discuss their methods and why using a mental or written method is the most efficient with the calculations they have been given.

Division: KSI

School

Year I	Year 2
Solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Methods of sharing and grouping should be explored.	Calculate mathematical statements for division within the multiplication tables $(2,5$ and 10$)$ and write them using the division (\div) and equals ($=$) signs. Children should be able to express that division is not commutative. Methods of sharing and grouping should be explored. Put into groups of 2. Put into 2 equal groups. There are \square groups. There are \square in each group. $\div 2=$

Division: KS2

Skill	LKS 2	UKS 2
Dividing by a 1-digit number	Mental: 3. Write and calculate mathematical statements for division using the multiplication tables that they know (2, 3, $4,5,8,10)$ using mental methods. $68 \div 2=$ Step 1 Divide 6 tens by 2. Step 2 Divide 8 ones by 2. Moving to trickier dividends where partitioning is needed: $54 \div 3=$ \square	Mental: 5. Divide numbers mentally, drawing upon known facts. $930 \div 3=$ $\begin{array}{r} 24 \div 4= \\ 824 \div 4= \\ 8024 \div 4= \\ 8424 \div 4= \end{array}$ \square \square \square

4. Pupils practise mental methods and extend this to three-digit numbers to derive facts, (for example $600 \div 3=200$ can be derived from $2 \times 3=6$).

Where derived facts can be identified between the dividend and the divisor, mental methods should be used:
6. Pupils undertake mental calculations with increasingly large numbers and more complex calculations.

$4 \div 4=1$
$10 \quad 10 \quad 10 \quad 10$
$40 \div 4=10$

$4 \div 4=$

10

$360 \div 12=$

$321 \div 3=$
100100100

Dividing by 2digit numbers	N / A	6. Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context $432 \div 15$ becomes 15

